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EXECUTIVE SUMMARY

Introduction

Vehicle weaving describes the trajectories of vehicles that

change lanes in areas between ramp merge and diverge junctions.

During heavy traffic, vehicle weaving will slow down traffic, cause

congestion, and increase the possibility of crashes. The Indiana

Department of Transportation (INDOT) may need to modify

weaving areas to reduce congestion and improve safety; however,

the modifications must be determined by traffic analysis using

origin-destination data on the percentage and pattern of vehicle

weaving. INDOT has cameras installed in urban areas on the

interstate system and in many weaving areas to capture this

information.

Findings

The Transportation and Autonomous Systems Institute (TASI)

of the Purdue School of Engineering and Technology at Indiana

University-Purdue University Indianapolis (IUPUI) and the

Traffic Engineering Division and Traffic Management Center of

INDOT worked together to develop a system that uses the videos

simultaneously captured at the entry and exit of the weaving area

to find the number and percentage of vehicles from each lane on

the entry to each lane on the exit. The developed system was

implemented in INDOT. The system has the following features.

1. User-provided weaving area information.

The system has an interface for the user to provide the entry and

exit locations, and the number of lanes and approximate lane

centers of the weaving area on the entry and exit camera images.

2. Vehicle detection.

Since the camera sees the road at an angle and the vehicle center

is the easiest and most accurate location for vehicle counting, the

lane center that the camera sees shifts from the actual lane centers.

Therefore, the vehicle trace is used to determine the lane locations.

Automatic vehicle detection is an essential part of this project. The

AI-based object detection method, YOLOv4, is used for vehicle

detection in various lighting and traffic conditions. As a result,

vehicle detection accuracy in an automatically selected region of

interest can reach over 90%.

3. Road boundary detection.

Since objects off the road can occasionally be falsely detected as

vehicles, the tracking information of detected moving vehicles is

used to determine road boundaries. Therefore, only the vehicles

detected on the road are considered for traffic condition checking.

This knowledge of road location helps to eliminate vehicle

detection errors.

4. Lane detection.

The lanes are statistically determined by tracing the vehicle

motion at the reference lines on the road, since most vehicles

remain in the same lane mostly in the region(s) of interest.

5. Vehicle count and classification.

The vehicles on each lane of the entry and exit are counted

and time stamped. The vehicles are classified into two types—cars,

and trucks.

6. AI-based vehicle match.

The features of all vehicles detected are extracted. The feature

matching score of every pair of vehicles, one at the entry and

one at the exit is generated. The vehicle pairs with a high

match score are further examined through filters to reduce false

positive matches.

7. User verification of matched vehicles.

A user-friendly interface program presents the pictures of

each pair of matched vehicles to let the user verify if they are true

or false.

8. Generation of the weaving analysis result.

The total number of detected vehicles is counted. The

percentage of counted vehicles from each lane in the entry to

each lane in the exit can be identified. By considering the truly

matched vehicles as a sample of the total vehicles, we can estimate

the number and percentage of vehicles from each lane in the entry

to each lane in the exit.

9. Hardware specification.

A Linux PC with a relatively low-end GPU and CPU (e.g.,

a $1,500 PC) is sufficient to run the developed software tool in

this work.

Implementation

The current methodology for origin-destination counts in the

weaving area are manual analysis methods, which are very tedious

and labor intensive. As a result, these counts are not undertaken

frequently, leading to many assumptions. The main contribution

of this study is to develop and implement an efficient and accurate

method for traffic origin-destination counts in the weaving area,

which reduces the person-hours by at least 90% compared to the

manual counts.
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1. INTRODUCTION

Vehicle weaving is the action of lane changing of
vehicles in weaving sections on highways. Weaving
section is defined in the Highway Capacity Manual as,
‘‘A length of one-way roadway’’ serving as an elongated
intersection of two one-way roads crossing each
other at an acute angle in such a manner that the
interference between cross traffic is minimized through
substitution of weaving for direct crossing of vehicle
pathways. One can interpret that weaving sections refer
to areas of the highway where there is an entrance or
exit ramp. Vehicles in areas of weaving sections are
often forced to perform lane changes to merge into the
highway from an entrance ramp or diverge from the
highway to an exit ramp. During heavy traffic, weaving
sections would contribute to slowing down the traffic,
causing congestion, and having a higher possibility of
crashes. Highway design needs to be modified in heavy
weaving sections to improve safety and operations.
Decisions on where those sections need to be modified
are built upon analyzing the traffic weaving at the
weaving areas.

Traditional ways of collecting traffic weaving data
include probe data (the data collected by monitoring
the position of vehicles over time and space), roadway
sensors, or counting based on a video recording by a
human. Probe data can provide meaningful informa-
tion that can contribute to the traffic weaving analysis;
however, they only provide road-based but not lane-
based information. Roadway sensors can provide an
accurate count of the vehicles moving through lanes but
still cannot provide information on how vehicles change
lanes in the weaving area. License plate identification
and matching techniques can be used for lane-based
weaving analysis. However, it needs a particular camera
setup in order to be able to see vehicles’ license plates
clearly enough for vehicle identification on multiple
lanes on the highway and ramps. The current method
for weaving analysis is by human observation and
counting from a video recording, which is very labor-
intensive. During rush hours, it could be difficult for
humans to count the vehicles and recognize the weaving
patterns in a weaving area. This research focused on
identifying, counting, and matching the vehicles based
on video input from highway or drone cameras using
AI techniques. This method can significantly reduce the
need for human labor-intensive counting. Given a
weaving area geometry (as shown in Figure 1.1), where
the entry and exit can be on either side of the highway
and no other entries or exits between P1 and P2, the
goal is to find the following based on the videos
recorded at P1 and P2.

1. The percentage of vehicles on the highway continuing to

the highway.

2. The percentage of vehicles on the highway going to the

exit.

3. The percentage of vehicles on entry going to exit.

4. The percentage of vehicles on entry going to highway.

Figure 1.1 A weaving geometry example.

2. TRAFFIC WEAVING ANALYSIS TECHNIQUES

This section discusses the techniques related to traffic
weaving analysis. To identify traffic weaving, we need
to understand what traffic weaving is about and the
techniques relevant to our research approaches.

According to the definition from the TRB Highway
Capacity Manual, weaving is "defined as the crossing of
two or more traffic streams traveling in the same
direction along a significant length of highway, without
the aid of traffic control devices (except for guide
signs)." The analysis of traffic weaving is crucial for
understanding the impact of lane changing on traffic
flow and safety. Our primary focus is on the lane-
changing behavior of vehicles at the entry and exit
points of the highway. Understanding the factors that
influence traffic weaving can provide valuable insights to
improve traffic flow and the safety of the weaving areas.

2.1 Vehicle Detection

Vehicle detection is a problem in computer vision
that involves identifying objects on a given image or a
video stream. The ability to automatically detect
vehicles has many practical applications. There have
been numerous advances in this topic over the past
years, and AI-based methods are the most effective in
vehicle detection. YOLO is one of the successful object
detection methods that can be applied to vehicle
detection. YOLO has several versions. YOLOv4 has
quite good vehicle detection accuracy. The later version
has incremental improvement in accuracy or execution
speed. YOLOv7 (Wang et al., 2022) is the most recent
version of YOLO, developed by the same team
members who developed YOLOv4.

2.2 Vehicle Tracking

In weaving analysis, the exact vehicle shown on the
different video frames cannot be counted as multiple
vehicles. Therefore, the detected vehicles need to be
tracked across several frames. Multiple object tracking
(MOT) is a complex problem that involves tracking
multiple objects over time in a given video. MOT aims
to associate the objects from one frame to the next.
Some challenges that exist in MOT are occlusion of the
objects, objects disappearing from the scene, and

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2024/02 1



objects that change appearance due to factors such as
angle change.

Two types of tracking algorithms are used today:
detection-free tracking and detection-based tracking. In
detection-free tracking, an initialization of the objects is
required to track the objects in the video. So, it does not
require an object detection model to tell where the
objects are, and the number of objects that can be
tracked will be fixed because new objects will not be
recognized. This method does not work in this research.
The detection-based tracking algorithms, also known as
tracking-by-detection, require an object detection model
to be trained first. The input of the detection-based
tracking algorithm is based on the output of the object
detection model. This output is like automatically setting
up the initialization process. However, if the perfor-
mance of the object detection is low, it will directly
impact the tracking performance. Since this algorithm is
much more flexible, it is more popular today.

There are many state-of-the-art detection-based
tracking algorithms. Of the state-of-the-art tracking
algorithms, DeepSORT is the most popular and
frequently used in traffic surveillance applications.
DeepSort uses deep learning to track objects in videos.
It starts by detecting objects in each video frame using
models like YOLO or Faster R-CNN. DeepSort then
extracts deep features for each detected object to track
them accurately. It links objects across frames based on
features and spatial information, uses Kalman filtering
for prediction, assigns unique IDs to tracks, and
handles occlusions. The output is a set of object tracks
with IDs, showing their paths in the video.

2.3 Vehicle Feature Extraction

Since a single camera usually cannot cover both the
entry ramp and the next exit ramp in a weaving area,
and the camera that captured the video at the entry
cannot overlap that at the exit, continuous vehicle
tracking from the entry to the exit is not feasible. It is
essential to match vehicles detected and tracked on
the entry and that on the exit. Vehicle matching is
also called vehicle re-identification in the AI field.
Vehicle re-identification requires two parts: the first is
the vehicle feature extraction, and the second is the
vehicle feature matching. Features of vehicles with
vast amounts of makes, models, colors, and viewing
directions are complex to describe. AI method,
DeepSORT, can be used to generate feature vectors
of large dimensions. The output of the feature is a
fixed-length array of numbers, and those numbers may
not have an intuitive connection to the physical
appearance of the vehicle features, but they do effectively
represent the physical appearance of the vehicles.

Cosine similarity (Prabhakaran, 2022) can be applied
to find the similarity of the feature vectors. Cosine
similarity is a widely used measure in data analysis
and machine learning that calculates the cosine of the
angle between two non-zero vectors. By applying the
calculation, we can evaluate how closely related the two

input feature vectors are. The output range of cosine
similarity is from -1 to 1. An output value closer to 1
indicates that the two feature vectors are close to each
other, while a value closer to -1 indicates that the two
feature vectors are not similar.

3. METHODOLOGY

This research aims to use the videos captured at the
entry and exit of a waving area to determine the weaving
pattern. To support the weaving analysis accuracy, a
video capturing guideline (see Appendix A) has been
developed to help the user set up the camera viewing
angle (and distance if possible) at their interested
weaving area to get the best quality video possible.

A framework consisting of several steps was devel-
oped for weaving analysis (Figure 3.1). The first step is
to collect location and video information about the
weaving area from the user. A GUI was developed to
guide the user to provide this information effortlessly.
Then, the recorded traffic camera videos are loaded.
YOLO vehicle detection and DeepSORT tracking
algorithms are used to detect and track all the vehicles
that go through the entry and exit videos. The lanes
from the perspective of the camera viewing angle are
learned, so the detected and tracked vehicles are
assigned to specific lanes on highways and ramps. An
AI method extracts features for each detected/tracked
vehicle. The features of detected vehicles at the entry
and exit are matched. To ensure the accuracy of the
result, the user is asked to verify an AI-generated

Figure 3.1 The framework for weaving analysis.
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Figure 3.2 The first page of the weaving area information gathering GUI.
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vehicle match to keep the actual match and eliminate
the false matches. The number and percentage of
vehicles from each lane at the entry to each lane at the
exit can be calculated and derived using the information
of truly matched vehicle pairs.

3.1 User-Provided Weaving Location Information

INDOT has installed hundreds of cameras around
Indiana highways. The users need to specify the
weaving area they are interested in, i.e., the entry and
exit locations, the path of the recorded video at these
locations, and where the vehicles should be counted on
the video. A graphic user interface (GUI) for weaving
area information gathering is designed to guide the
users to provide information quickly. The GUI first
shows a title page (see Figure 3.2). At the bottom of the
page is a button Set Up Camera for P1 to navigate to
the next page and an input field for assigning a weaving
ID. The weaving ID is a case identifier for the user’s
future reference. Users can assign any numerical ID
they wish. It will not affect the program execution.

On the following GUI page (Figure 3.3), users are
prompted to input the file path for the video recording
associated with the weaving case. To facilitate this,
users can click the browse button, which opens a file
navigator, enabling them to select the desired video file
easily. Once the selection is made, the file path will be
displayed below the browse button for reference and
confirmation. Notably, for user convenience, an image

representing the entry location will be displayed
prominently on the page when selecting the entry
location video, serving as a helpful visual cue to ensure
users understand the context of their selection.
Likewise, when users are asked to choose the exit
location video, the page will display an image
corresponding to the exit location.

After the user inputs the recorded video file path, the
user is asked to specify the Region of Interest (ROI) on
the video for vehicle counting and other information
that the user can easily provide, such as the reference
baselines of the highway and the ramp, lane centers on
the road, number of lanes in each of the baselines, and
the direction of traffic (Figure 3.4). The baseline is a
reference line in an ROI. This line should be located
where the camera can see vehicle details. Lane centers
are where the human-perceived lane centers are located
at the selected baseline. The number of lanes is on the
baseline in the ROI. The direction of the traffic is if the
traffic is moving down or up in general. A similar user
interface repeats the entry and exit locations of the
weaving area. With the user-provided information, the
program can analyze the weaving patterns.

3.2 Vehicle Detection and Tracking at Entry and Exit
Using AI

Since the intended weaving analysis needs to
determine how many vehicles on each lane of the entry
location are going to each lane at the exit location, the



Figure 3.3 Page 2 of the GUI asks the user to provide the path of the recorded video.

Figure 3.4 The user specifies (a) the baseline location as shown in the blue line, (b) the lane centers that are on the baselines as
shown in the red dots, and (c) the number of lanes and the direction of the traffic flow in the textbox and the dropdown box.
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lane location on the video is essential to assign detected
vehicles to lanes. Although the user has provided the
rough location of each lane center, they are from the
user’s bird-eye view perspective. Since the camera may
see the road from an angle different from the bird-eye
view, the lane center seen by the camera may be close
but different from the user-provided lane centers.

Therefore, the lane learning method (Qiu et al., 2021)
is applied to learn the lane center locations from the
camera viewing perspective. The user-defined lane
centers are references to determine the accuracy of the
learned lane centers.

The lane centers at different road points within
the ROI are detected, and the adjacent lane centers



Figure 3.5 Result of the learning process.

Figure 3.6 Vehicles counted for each lane.
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are grouped to determine the lanes. The lane center
(pink line) is generated by curve fitting for each group
of adjacent lane centers. The lane boundaries (yellow
contour) are derived from lane centers (see Figure 3.5).

After the detection of the lanes, the center location of
all detected and tracked vehicles can be associated with
lanes in the ROI, and the vehicles going through each
lane can be counted (see Figure 3.6).

We used YOLOv4 to detect vehicles. Although newer
iterations of YOLO were available during the course
of our research, we did not adopt the newer iterations
for several reasons. First, our YOLOv4 model had

undergone extensive training yielding a level of
accuracy that satisfied the requirements of our study.
Training newer versions of YOLO would cost time and
resources, with only potential marginal gains in
accuracy. Second, while the newer YOLO versions
enhanced real-time performance, our research primarily
focused on post-processing analysis rather than real-
time. Thus, it is not a priority for us to update the
analysis to newer versions of YOLO.

DeepSORT was used as our vehicle tracking algo-
rithm as it is the best for the feature extraction we
tested. The feature extractor directly impacts how well



the vehicles can be matched. Thus, with better training,
or a better model of the feature extractor we might be
able to obtain a better performing system. However, as
we did not have the time to perform tests on many
other feature extractors, this could be studied further.

3.3 Vehicle Feature Extraction and Matching

3.3.1 Feature Extraction

The detected vehicles are first cropped from the video
frames to focus on getting the features of detected
vehicles and reducing the noise generated by surround-
ing objects. Then, the feature extractor produces a
feature vector for each cropped vehicle image. Luo
et al. (2019) and DeepSORT (Wojke et al., 2017) can
generate a feature vector based on the cropped vehicle
image. By comparing the performance of both algo-
rithms, it was found that the feature extractor by Luo
et al. (2019) has a better quality. We also used the
VeRi776 (Liu et al., 2016) dataset combined with our
own dataset to further train this re-identification
model by applying the transfer learning method to
reach better accuracy.

3.3.2 Vehicle Matching

We need to match the entry vehicles with the exit
vehicles as those vehicles travel from the entry to the
exit. The total number of possible pairs of vehicles that
we need to compare will be given by Ventry ? Vexit.
However, it should be noted that the maximum number
of correct match pairs may be lower or equal to the
minimum of Ventry and Vexit because each entry vehicle
should be matched with at most one exit vehicle.

Vehicle matching between the entry and exit is
measured using cosine similarity. The cosine similarity
score should be 1 when the vehicles are identical and
closer to -1 if the vehicles are entirely different. We
experimentally set a threshold value for cosine similar-
ity to eliminate most false matches while keeping the
accurate matches. This is important because it may be
challenging to obtain the actual matches buried in them
with too many false matches. However, the program-
generated matches still have a significant number of
false matches (over 90% are false matches).

In this vehicle matching process, the features of every
vehicle detected from entry are compared with those
from exit. The cosine similarity checking program
generated a result showing a many-to-many vehicle
relationship. This is a problem because, realistically, an
entry vehicle should only be matched with at most one
exit vehicle, which is a one-to-one relationship. This can
be demonstrated by Figure 3.7. The row represents
the vehicles detected in all frames of the entry video.
The column represents the vehicles detected in all
frames of the exit video. Each white dot shows a
program-generated vehicle match which passes the
cosine similarity threshold value. In fact, only the white
dots on the faint upper-left to bottom-right line has a

high probability of being true vehicle matches and all
other white dots are false matches.

3.3.3 Filtering Out False Matches

A set of filters was adopted to filter out the false
matches.

Filter 1: Remove matches where the frame time at entry
is later than the time at the exit.

In a weaving area, vehicles are flowing in one
direction only, thus it is not possible for a vehicle to
be observed at exit before it has been observed at
entry. Assuming that the videos at entry and exit were
being recorded simultaneously, the vehicles at entry
with a later timestamp and those at the exit with an
earlier time stamp must be a false match. A significant
number of false matches can be removed using this
criterion. Since cameras used at the entry and exit may
have different frame rates, the frame number needs to
be upscaled if it has a lower FPS than the other video.
The frame ID of the low FPS video can be scaled up
using the following equation.

Frame Numberupscaled~

round Frame Numberoriginal �
FPShigher

FPSlower

� �

Filter 2: Remove matches with vehicles of different types.

YOLO vehicle detection can distinguish the vehicles
by type of cars and trucks. The type information is
associated with every detected vehicle. The type of
vehicle at the entry and exit are checked. If they are
different, the match is considered false. It is worthwhile
to note that this filter does not eliminate a significant
number of false vehicle pairs.

Filter 3: Time filter.

The average speed of vehicles in a weaving area does
not change in a short period most times. If the travel
time from the entry to the exit can be found, the
vehicles that matched not around this travel time are
considered false matches. The main task of this filter is
to find a range of the travel time for vehicles. To
identify the traffic time, we assumed that there will be
more vehicle matches around the average travel time
from the entry to exit, if the extracted features can help
vehicle match. Therefore, the following equation is used
to assign a "score" to different traveling time, t, in all
matched vehicle pairs, where k is the number of frames
that results in travel time t.

Score tt~

Pn
v~0 cosine similarity score

k

The plot of score versus traveling time for actual
weaving data is shown in Figure 3.8. The resulting
graph has three different lines. The graph’s horizontal
axis represents the travel time, and the vertical axis
represents the average sum of the cosine similarity score
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Figure 3.7 Example of program-generated vehicle matching results.

Figure 3.8 The plot of score versus traveling time for actual weaving data.
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over the k frame window. The blue color represents the
collection of original vehicle match points, and the
black line represents the smoothed data values after
applying an average filter of window size five. The
traveling time with the highest score, as shown in the
red box, is considered the trustable traveling time from
the entry to the exit.

Since there are variations in the travel time due to
different vehicle speeds, we divided the data in 10
minutes segments. In each 10 minutes segment, we

assume that the vehicle speed is relatively consistent. For
the small vehicle speed variations, we want to expand
the acceptable vehicle travel time from a peak value into
a range around the peak value. So, we expand the frame
number from the peak frame number to the left and
right until the value is always lower than the average
cosine similarity score. Based on this range, we will
remove all the vehicles outside this travel time. Please
note that this is the travel time for most vehicles. It is
possible to filter out some actual vehicle matches.



Filter 4: Remove inconsistent match based on the
percentage of frames they were matched in all frames
they were detected.

During the vehicle detection and tracking, each
vehicle is detected and tracked over many image frames
as it passes through the ROI. Thus, we have generated
feature vectors for each vehicle at every frame as the
vehicles pass through the ROI. Some vehicle matches
are consistent throughout most frames where they were
identified, but some vehicle matches only exist in a
small portion of the frames where they were identified.
The former is more likely to be an actual match. The
latter is less likely to be an actual match. Therefore, this
phenomenon removes less likely true (or more likely
false) vehicle matches.

Filter 5: Remove duplicate matches.

In matching vehicles at entry and exit, each entry
vehicle should be matched with one exit vehicle and vice
versa at most once. However, even after applying the
various filters discussed before, there is still a possibility
that a vehicle can be matched with multiple vehicles. If
a vehicle appears in multiple matches, the match with
the highest score will be kept, and all others are
considered false matches.

Summary of the Filters

Figure 3.9 shows the ground truth vehicle matches
and the program generated before and after filtered
vehicle matches.

Filters 1 and 3 can significantly reduce the number of
vehicle pairs; a high percentage of the pairs removed
are false positive pairs. Specifically, all the vehicles
removed in filter 1 should be false positive pairs since
vehicles in a weaving area are flowing in one direction
only. Filter 3 should remove most of the vehicles
outside of the travel time for most of the vehicles,
which could remove some of the actual matches but
should be a small fraction compared to the false
matches removed in this filter. Those two filters will
significantly improve the precision of the matches and
only slightly reduce the overall positive matches.
Filters 2, 4, and 5 do not reduce as many vehicle pairs
compared to the other filters. However, those filters
are still significant. They could occasionally remove
the true positives but much less than the number of
false positives removed. It means that they can still
improve the overall precision rate.

3.4 Improvement of the Vehicle Matching Accuracy

Even after filtering, the result described in Section 2.3
still has significant matching errors (It will be shown
in Section 4.). We do not have a better way of using a
program to filter out these errors now. However, these
errors can be relatively easily identified by human
beings. Assuming 1,000 vehicles are observed at entry
and exit in 2 minutes, the user may need to compare
1,00061,000 pairs of vehicles to find the car matches
on 1,200 images (assume ten frames per second)
without using our proposed method. It will take one
person several days of intensive work to find all the
matches. Assuming one can find the vehicle match for
50% of vehicles using our method, we only need to
determine which of the 500 vehicle pairs are true match
and false match, which takes about 1 hour to complete.
We created a simple GUI to bring the matched vehicle
pairs one by one and guide the user through the
correctness checking of these matched vehicle pairs
easily (see the user interface in Figure 3.10). After this
step, a portion of all detected vehicles are matched, and
all matched vehicles are actual matches with the user
verification.

3.5 Tallying of the Results

After finding the accurately matched vehicle pairs
between the entry and exit colocations, the number and
percentage of vehicles from each lane at the entry and
each lane at the exit can be tallied. Since only a
percentage of the vehicles can be matched with high
confidence, the result can be considered accurate
samples, which can be converted back to the total
vehicle population in the weaving area.

3.6 Presentation of the Results

The Sankey diagram is a perfect method to describe
the weaving analysis results (see Figure 3.11). The
colored bars on the left represent the lanes at the entry;
the colored bars on the right represent the lanes at the
exit. The widths of curves connecting the lanes on the
left to the lanes on the right show the number and
percentage of vehicles. Figures 3.11, 3.12, and 3.13 are
from the same weaving case results, showing all
vehicles, cars only, and trucks only, respectively. The
detailed information is shown in the white text on the

Figure 3.9 The comparison of ground truth, the program generated before and after filtering vehicle matches.
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Figure 3.10 The user interface of vehicle matching verification.
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Figure 3.11 Sankey diagram for all vehicles after manual vehicle match verification.

diagram. Those numbers indicate the actual number of
vehicles. We provided two different numbers: detected
number of vehicles and matched number of vehicles.
The detected number of vehicles presents the total
count of the vehicles in the input video by the program,
and the matched number of vehicles is the number of
vehicles in the video sample that the proposed method

found to match. The number of matched vehicles is a
small sample of detected vehicles. The matched vehicles
also have lane-specific information. Using this sample,
we can provide expected results with certain confidence
and better understand the actual number of vehicles
driven from the entry to the exit rather than a small
sample size.



Figure 3.12 Sankey diagram for cars after manual vehicle match verification.

Figure 3.13 Sankey diagram for trucks after manual vehicle match verification.
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4. EXPERIMENT RESULTS

This section presents the proposed weaving analysis
results on a set of scenarios.

4.1 Experiment Setting

The program execution was conducted using a
computer running Ubuntu 20.04 LTS. The hardware
specifications of the computer are as follows.

N Hardware Model: Dell Inc. Precision 5820 Tower.

N Memory: 32 GB.

N Processor: Intel XeonH W-2223 CPU @ 3.60 GHz 6 8.

N Graphics card: NVIDIA Corporation TU1040GL
Quadro RTX 4000.

4.2 Data Collection

The data collection process starts by identifying the
weaving areas on Indiana highways. INDOT supported
this process. Twelve weaving areas were identified for
the experiment. Figure 4.1 to Figure 4.6 show the
images of the entry and exit of six weaving areas.

In addition to the videos captured by highway cameras,
we also used drones to record the desirable viewing
angles. Such cases are shown in Figure 4.7 and Figure 4.8.

4.3 Ground Truth Data Generation

It is necessary to obtain the ground truth for the data
that we have collected to evaluate the accuracy of the
results that we generate from processing the recorded

videos. This would involve reviewing every frame of the
video and documenting the frame number and vehicle
ID of each vehicle as it first appears, as well as the
corresponding exit frame number and vehicle ID. Table
4.1 provides the format of the ground truth data we
collected. The first column (entry vehicle ID) is the ID of
the detected vehicle at the entry. The number before the
underscore is the lane ID when the vehicle is detected,
and the number after the underscore is the vehicle ID on
that lane. The second column (entry vehicle number) is
the frame number when the vehicle first appears.

Similarly, the third and fourth columns list the exit
vehicle ID and exit frame number, respectively. Each
row records a pair of matched vehicles at the entry and
exit. This ground data was used to compare the results
obtained from our proposed method.

In addition to the frame number when the vehicle’s
match appears, the table also provides the number of
frames it takes to travel from the entry to the exit point.
In the case shown in Table 4.1, the data suggests that it
takes approximately 3,000 frames (100 seconds at 30
frames per second) to travel from the entry to exit. This
timing information will be used later when we check the
correctness of filter 3.

4.4 Quality of the Weaving Analysis Results

4.4.1 Analysis of Lanes Learned

This section describes the effectiveness of the lane
learning module. All lanes must be appropriately
learned to assign the detected vehicles to the proper

Figure 4.1 Weaving Area 1. Entry on the left, exit on the right.

Figure 4.2 Weaving Area 2. Entry on the left, exit on the right.
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Figure 4.3 Weaving Area 6. Entry on the left, exit on the right.

Figure 4.4 Weaving Area 8. Entry on the left, exit on the right.

Figure 4.5 Weaving Area 9. Entry on the left, exit on the right.

Figure 4.6 Weaving Area 10. Entry on the left, exit on the right.
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lanes. Figures 4.9 shows an example of the lane learning
output results, and Table 4.2 gives detailed results of all
the weaving cases. The data in the table indicates that
the learning output of the framework is generally
favorable across various scenarios that we tested, with

the system successfully learning all the lanes on the road
in most cases.

There are specific cases where the system did not
capture all the lanes on the road. This is likely due to
one of three reasons: either no vehicles were passing



Figure 4.7 Weaving Area 11. Captured by a drone camera (entry on the left) and a highway camera (exit on the right).

Figure 4.8 Weaving Area 12. Captured by a highway camera (entry on the left) and a drone camera (exit on the right).

TABLE 4.1
Example of ground truth data

Entry Vehicle ID Entry Frame Number Exit Vehicle ID Exit Frame Number

1_2

0_1

2_1

2_2

2_3

4_1

2_3

1_4

2_4

0_3

2_5

3_2

0_5

1_7

4

4

4

4

4

4

31

37

60

93

154

202

256

335

4_39

3_43

1_20

1_17

2_33

5_7

4_38

1_22

0_48

4_40

2_38

0_4

2_36

3_50

3099

3095

3078

3067

3084

2870

3095

3266

3318

3198

3492

3360

3323

3464
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through the lanes during the lane learning period
(unless this lane is closed, this may not be the proper
time to study the weaving behavior), or the camera
viewing angle makes it challenging for the system to
capture the lane (which may justify using drone to
collect the data), or the sunlight angle causes poor video
data (collecting data at a later time or using drone
to collect the data in a different viewing angle).

4.4.2 Analysis of Vehicle Counting

Lane-based vehicle detection and counting at
both entry and exit of a weaving area is an essential

step in weaving analysis after lane learning. We
use the recorded videos of 12 weaving areas as input
to our system. Table 4.2 describes the camera location
and setting for these weaving areas. The videos of each
scenario are processed until the system has successfully
counted 100 vehicles. We also manually count the
vehicles by watching the same video. This manual count
will be treated as the ground truth count and used to
compare with the vehicle count by our proposed
method. This comparison provides the accuracy of
the system counting. Table 4.3 presents the experi-
ment’s outcomes, showing the counting accuracy of
various cases, most of which exceed or equal to 95%.



Figure 4.9 Example of the lane learning output.

TABLE 4.2
Lane learning results for all available weaving cases

Weaving Scenarios Number of Lanes (ground truth) Number of Lanes Learned Accuracy (%)

Weaving 1 Entry Morning

Weaving 1 Exit Morning

Weaving 1 Entry Noon

Weaving 1 Exit Noon

Weaving 1 Entry Afternoon

Weaving 1 Exit Afternoon

Weaving 2 Entry Morning

Weaving 2 Exit Morning

Weaving 2 Entry Noon

Weaving 2 Exit Noon

Weaving 2 Entry Afternoon

Weaving 2 Exit Afternoon

Weaving 6 Entry Afternoon

Weaving 6 Exit Noon

Weaving 8 Entry Morning

Weaving 8 Exit Morning

Weaving 8 Entry Noon

Weaving 8 Exit Noon

Weaving 8 Entry Afternoon

Weaving 8 Exit Afternoon

Weaving 9 Entry Morning

Weaving 9 Exit Morning

Weaving 9 Entry Noon

Weaving 9 Exit Noon

Weaving 9 Entry Afternoon

Weaving 9 Exit Afternoon

Weaving 10 Entry Morning

Weaving 10 Exit Morning

Weaving 10 Entry Noon

Weaving 10 Exit Noon

Weaving 10 Entry Afternoon

Weaving 10 Exit Afternoon

Weaving 11 Entry (Drone Camera)

Weaving 11 Exit

Weaving 12 Entry (Drone Camera)

Weaving 12 Exit

5

5

5

5

5

5

5

5

5

5

5

5

5

6

3

4

3

4

3

4

6

5

6

5

6

5

6

6

6

6

6

6

4

4

4

5

5

5

5

5

5

5

4

3

5

5

5

5

5

6

3

4

3

4

3

4

6

5

6

5

6

5

6

6

4

6

5

6

4

4

4

5

100

100

100

100

100

100

80

60

100

100

100

100

20

100

100

60

100

100

100

100

100

100

100

100

100

100

100

60

67

100

83

100

100

100

100

100
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TABLE 4.3
The camera location and setting of the weaving areas

Weaving

Area ID Weaving Area Description

Entry

Camera ID

Entry Camera

Preset Number

Exit

Camera ID

Exit Camera

Preset Number

1

2

3

4

5

6

7

8

9

10

11

12

I-70 West Bound Post to I-465

I-70 East Bound I-465 to Post

I-465 North Bound I-70 to Pendleton Pike

I-265 East Bound I-65 to SR 62

I-265 West Bound SR 62 to I-65

I-69 North Bound 96th St to 106th St

I-69 South Bound 106th St to 96th St

I-69 South Bound 71st St to I-465

I-465 North Bound 71st St to 86th St

I-465 South Bound 86th St to 71st St

I-465/47.2 US 52 East, Brookville Rd.

I-70/88.7 Shadeland Ave

90

88

143

326

344

202

204

126

21

23

Drone

188

7

6

6

6

7

6

7

7

6

7

–

–

88

90

41

344

326

204

202

162

23

21

47

Drone

7

6

6

6

7

6

7

7

6

7

–

–
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These results demonstrate the reliability of the system’s
vehicle counting.

There are two possible scenarios for vehicles that
are not counted correctly: the system either double-
counted a vehicle or missed the vehicle entirely. When
the system double-counts a vehicle, it assigns two
distinct IDs to the same vehicle. Consequently, this
vehicle may be matched with two different vehicles since
each unique ID is treated as a separate vehicle. When the
system misses the vehicle, it cannot find a corresponding
match. There may be instances where the system will
try to guess a match, resulting in incorrect pairings.
However, it is worth noting that the overall accuracy of
the counting exceeds 90%, demonstrating the applic-
ability and practicality of the developed vehicle counting
method in traffic weaving areas.

4.4.3 Analysis of Vehicle Match Using Vehicle Features
(Before Manual Check)

The AI-generated vehicle features are used to
match the vehicles at the entry and exit of the
weaving area. To describe the accuracy of the final
vehicle matching results (before manual checking), we
used the ground truth data obtained manually to
obtain the true positive rate (TPR) and precision.
TPR indicates the percentage of all potential match-
ing vehicles the algorithm considered a match (not
necessarily the actual match). Precision provides the
percentage of the accurate match in all algorithm-
considered matches. Table 4.4 shows the results of the
experiment. It can be seen that the results of some

weaving areas (e.g., 1, 11, and 12, shown in red color)
are, in general, better than those of other weaving
areas. The results of all other weaving areas are either
low or inconsistent over time. Checking closely at
these weaving areas, it can be concluded that the
results are better when the cameras see the same side
of the vehicles at both entry and exit. It is reasonable
that the visual features of a vehicle seen from different
sides are different; thus, the matching chance is lower.
Therefore, getting the cameras to see the vehicles in
the same direction at both entry and exit is advisable.
For Weaving Area 2, although the cameras at the
entry and exit see two different ends of the vehicle,
they do see the same side of the vehicle, so the
matching result is still usable sometimes.

4.4.4 Analysis of Vehicle Match After Manual
Elimination of False Match

A certain number of pairs are false matches for all the
matched vehicle pairs generated by the program. After
the user visually checks and eliminates the false matches,
the TPR will be decreased, but the precision will be
100%. Table 4.5 shows the precision of the vehicle match
and the video quality. Table 4.6 shows the results after
the manual elimination of false matches.

4.4.5 Presentation of Weaving Analysis Results

Figures 4.10 to 4.12 show the result of all cars, cars-
only, and truck-only weaving analysis of Weaving Area
2 morning in a Sankey diagram, respectively.



TABLE 4.4
Comparison of counting accuracies between manual count and program count

Weaving Scenario and Location Manual Count Program Count Accuracy (%)

Weaving 1 Entry Morning

Weaving 1 Exit Morning

Weaving 1 Entry Noon

Weaving 1 Exit Noon

Weaving 1 Entry Afternoon

Weaving 1 Exit Afternoon

Weaving 2 Entry Morning

Weaving 2 Exit Morning

Weaving 2 Entry Noon

Weaving 2 Exit Noon

Weaving 2 Entry Afternoon

Weaving 2 Exit Afternoon

Weaving 6 Entry Afternoon

Weaving 6 Exit Noon

Weaving 8 Entry Morning

Weaving 8 Exit Morning

Weaving 8 Entry Noon

Weaving 8 Exit Noon

Weaving 8 Entry Afternoon

Weaving 8 Exit Afternoon

Weaving 9 Entry Morning

Weaving 9 Exit Morning

Weaving 9 Entry Noon

Weaving 9 Exit Noon

Weaving 9 Entry Afternoon

Weaving 9 Exit Afternoon

Weaving 10 Entry Morning

Weaving 10 Exit Morning

Weaving 10 Entry Noon

Weaving 10 Exit Noon

Weaving 10 Entry Afternoon

Weaving 10 Exit Afternoon

Weaving 11 Entry (Drone Camera)

Weaving 11 Exit

Weaving 12 Entry (Drone Camera)

Weaving 12 Exit

93

104

98

97

100

96

100

94

100

96

100

91

94

99

93

84

91

81

94

83

98

100

100

97

95

100

102

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

93

104

98

97

100

96

100

94

100

96

100

91

94

99

93

84

91

81

94

83

98

100

100

97

95

100

102

60

100

100

100

100

100

100

100

100

16 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2024/02



TABLE 4.5
Experiment results show the TPR and precision before manually checking program-generated matches

Weaving Areas and Scenarios (TP+FP)/Total Vehicles (%) Precision (%) Vehicle Viewing Angle Video Quality

Weaving Area 1 Morning

Weaving Area 1 Noon

Weaving Area 1 Afternoon

Weaving Area 2 Morning

Weaving Area 2 Noon

Weaving Area 2 Afternoon

Weaving Area 6 Morning

Weaving Area 6 Noon

Weaving Area 6 Afternoon

Weaving Area 8 Morning

Weaving Area 8 Noon

Weaving Area 8 Afternoon

Weaving Area 9 Morning

Weaving Area 9 Noon

Weaving Area 9 Afternoon

Weaving Area 10 Morning

Weaving Area 10 Noon

Weaving Area 10 Afternoon

Weaving Area 11 (Entry Drone)

Weaving Area 12 (Exit Drone)

44.36

47.81

41.18

59.22

0

53.89

38.51

41.22

3.86

0

0

0

42.54

55.10

53.04

3.80

10.31

9.43

35.43

39.35

67.69

88.19

74.83

69.44

0

64.04

42.60

46.54

12.40

0

0

0

43.24

31.96

29.66

25.00

54.54

4.60

71.85

88.46

Rear-Rear

Rear-Rear

Rear-Rear

Front/Side-Rare/Side

Front/Side-Rare/Side

Front/Side-Rare/Side

Rear-Front

Rear-Front

Rear-Front

Rear-Front

Rear-Front

Rear-Front

Rear-Front

Rear-Front

Rear-Front

Rear-Front

Rear-Front

Rear-Front

Front-Front

Front-Front

Good-Good

Good-Good

Good-Good

Good-Good

Good-Poor

Good-Good

Good-Good

Good-Good

Good-Good

Poor-Poor

Poor-Poor

Poor-Poor

Good-Good

Good-Good

Good-Good

Good-Good

Good-Good

Good-Good

Good-Good

Good-Good

Note: Red results are, in general, better than those of other weaving areas.

TABLE 4.6
Experiment results show the TPR and precision after manually checking program-generated matches

Weaving Areas and Scenarios TP/Total Vehicles (%) Precision (%) Vehicle Viewing Angle Video Quality

Weaving Area 1 Morning 33.53 100 Rear-Rear Good-Good

Weaving Area 1 Noon 42.38 100 Rear-Rear Good-Good

Weaving Area 1 Afternoon 32.9 100 Rear-Rear Good-Good

Weaving Area 2 Morning 45.36 100 Front/Side-Rare/Side Good-Good

Weaving Area 2 Afternoon 39.64 100 Front/Side-Rare/Side Good-Good

Weaving Area 11 (Entry Drone) 27.65 100 Front-Front Good-Good

Weaving Area 12 (Exit Drone) 35.28 100 Front-Front Good-Good

Figure 4.10 Sankey diagram for all vehicles after manual vehicle match verification.
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Figure 4.11 Sankey diagram for cars after manual vehicle match verification.

Figure 4.12 Sankey diagram for trucks after manual vehicle match verification.
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5. PROJECT DELIVERY

The complete software, software installation manual,
user manual, and camera setting guide document have
been delivered to INDOT. The system has been
implemented in INDOT. This project has been accepted
for oral presentation in 2024 TRB in Washington, DC.

6. DISCUSSION

There are some limitations and potential solutions
for applying this method.

1. The cameras at the weaving entry locations and the exit
locations need to see the same sides of the vehicles. This
ensures similar vehicle features of the vehicles can be seen
at both entry and exit to achieve a certain matching
accuracy. When the camera at the weaving entry and

camera at the weaving exit see different sides of the vehicle

(especially one sees only the front and other sees the rare),

there are less common features generated, hence poor

feature matching results. For a camera to see both entry

ramp and highway, and the other camera to see exit

ramp and highway in the same weaving area, the two

cameras usually do not see the same side of the vehicles.

One way to solve this problem is to use a drone at the

weaving entry or exit. This solution has been tested and

results are very good since the drone can take videos at

better viewing location and angle than highway cameras.

The limitation is that the flying time for a drone is limited

(in our case, it is 45 minutes), so multiple drones are

taking videos one after another when longer data taking

time is needed.

2. Another limitation is that the highway camera should not

be moved during weaving data collection. As the camera

angle and zoom change, the road location on the video



changes, then the vehicle detected cannot match the lanes.

However, for the weaving are being interested to do

analysis, the traffic monitor operators are often interested

in these areas and change the camera angle and zoom.

Some coordination between the weaving data collector

and the traffic management operators are needed.

7. CONCLUSION

A novel lane-based weaving analysis method was
successfully developed. The method uses the advantages
of AI algorithms for vehicle detection, tracking, and
feature extraction to generate initial approximate
results. Knowing the limitations of AI methods, the
proposed method used filters based on physical
constraints and reasoning to improve the results
significantly. As there are no other ways to improve
the result further, the user is asked to finally be involved
to perfect the results. Since it is challenging to match all
vehicles between the entry and exit, the matched
vehicles in a weaving area are considered samples to
obtain the final results of the weaving analysis. The
proposed method has been implemented as a software
tool and successfully tested using actual weaving area
data. This software tool has been implemented in
INDOT to improve highway traffic analysis and
alternative development.
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APPENDIX A. SETTING UP A CAMERA FOR WEAVING VIDEO DATA COLLECTION 

A.1 Background 
Vehicle weaving between an exit ramp and an adjacent entry ramp is shown in Figure 1. To 
understand how the vehicles are weaving, we can use two cameras to record the video and then 
use the computer program to quantify how the vehicle weaving between the lanes from entry to 
the exit. 

A.2 Camera Setup Steps 
1. Number of cameras: 

a. Two cameras are needed: One is at the entry, and one is at the exit. 

2. Camera setup 
a. Two camera's system times should be set up the same (within a few seconds). The videos 

should be recorded at the same time. 
b. Ensure the camera is set to record timestamps and show it on the video, which is critical 

for data analysis. 
c. If camera Focus and Exposure can be set, the camera's focus should be set to ensure clear, 

sharp images of the vehicles. Adjust the exposure settings to handle different lighting 
conditions during the day. 

d. If possible, set the camera to record at the highest resolution and frame rate it supports, as 
this will provide the most detailed and accurate data. 

3. Camera location and viewing angle set up: 
a. Both cameras should be looking at the same side of the vehicle (either the top-front-side 

or the top-rear-side). See the following example. 

Entry camera Exit camera 
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i. Two highway cameras usually cannot satisfy this requirement. 
ii. One highway camera can be used first to determine which side of vehicles is seen. 

Then the drone camera can be set up to see the same side of the vehicles. 
iii. Two drone cameras can be used to record simultaneously (one at entry and one at 

exit) if no highway camera exists at both entry and exit. 
b. Determine a road location (at both entry and exit) where you want to detect and count 

vehicles. The ideal location is at the highway and ramp about to join (at entry) or split (at 
exit), but the highway and ramp are 2 to 5 lanes apart.  Around that location, specify a 
horizontal line (we call it baseline) across the highway and another baseline across the 
ramp. 

c. Adjust the camera angle and zoom level, and possibly the camera location to achieve the 
following.  

i. The frame should clearly cover all lanes of the highway and ramp at the baseline. 
ii. Assume there is a rectangle bounding box (aligned with the x and y axes of the 

frame) around all vehicles. Adjust the camera angle and zoom level to satisfy both 
of the following two conditions (1) the top of the semi-truck bounding box should 
be about 1/4th of the whole frame height while the bottom of the semi-truck 
bounding box is at the bottom of the frame. (2) the baseline is at the about ¼ of 
the whole frame height from the bottom of the frame. 

    

Semi-Truck bounding 
box height is ¼  of the 
frame height 
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iii. Avoid any structure (e.g., trees, road signs, light poles) that blocks the view of the 
lanes one or two passenger cars length above and below the specified baseline. 

d.  Set the camera viewing angle and zoom level or distance (especially for drones) such 
that: 

i. The best viewing angle is clearly seeing all vehicles top, side, and end (front or 
rear). This is achieved by adjusting the camera position and viewing angle. 

ii. Try to get a stable (not shaking) video with the sharpest vehicle image. Zooming 
in too much makes the image fuzzy and unstable. Windy weather makes a video 
shake and reduces the video quality. Nighttime/dark, raining, snowing conditions 
also reduce the video quality. 

iii. Make sure any footage or caption does not cover the lanes below the baseline.  

Note: Step 3 may need to be iterated to satisfy all requirements. Usually, drone camera has better 
freedom to be set, so begin by determining which fixed camera best meets the criteria above and 
use the drone at the other location.  

A.3 Examples 

Good Example: vehicle size is good all three sides are seen clearly.   

Semi-Truck bounding 
box height is ¼  of the 
frame height 
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A.4 Bad Examples of Baseline or Angle Settings 

Bad viewing angle example 1 (see figure below): Vehicles on the ramp are easily occluded by 
vehicles on the highway lane. 

Solution: If this is the highway camera, the freedom of camera motion is limited. The camera 
should be turned a little bit right and zoom in (red line).  However, zoom in too much can cause 
image blur and shacking. If using a drone, the drone can fly higher to reduce occlusion. 

Bad viewing angle example 2 (see figure below).   
At this angle, we cannot see the side feature of the vehicle on the ramp well. It makes entry-exit 
vehicle matching difficult. 

Suggested solution: If it is the highway camera, there is not much we can do because we cannot 
shift the camera left to see the side of vehicles. If it is a drone, move the drone to the left will 
enable the side of the vehicle visible. 

Bad example 3 of baseline selection (occlusion, see figure below). 
1. Baseline is too close to the message board (pink circle), it will affect lane learning. 
2. At this angle, we only see the front and top of the vehicles on the ramp so we cannot see the 
side feature of the vehicle. It makes entry-exit vehicle matching difficult. 
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The solution is to move down the baseline will improve the quality. 

Bad example 4: Baseline too high on the frame. The clearer vehicle can be obtained if the camera 
angle can be adjusted higher, zoom in more, or make the drone get closer. 

  

Solution: There is not an easy fix for this case. A better angle is to move the camera up and zoom 
in (see red line) 
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Bad example 5: Baseline too low and a fixed structure obscured the vehicles. So a large truck 
may not be detected at the baseline. Need to move the baseline higher and readjust he camera. 

Solution: Move the baseline up and move the camera angle up. 

Bad example 6: Entry and exit do not show the same sides of the vehicles. 

Solution: Since entry camera provides a better view of the vehicles, need to use a drone at the 
exit to see the same sides of the vehicle. 
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